Difference between revisions of "Weibull distribution"
m (categories) |
(Equations) |
||
Line 3: | Line 3: | ||
[[category:Unimodal distributions]] | [[category:Unimodal distributions]] | ||
[[category:Univariate distributions]] | [[category:Univariate distributions]] | ||
+ | [[Category:Doc Status D]] <!-- For Lumina use, do not change --> | ||
+ | {{ReleaseBar}} | ||
+ | The [[Weibull]] distribution is often used to represent failure time in reliability models. It is similar in shape to the [[Gamma|gamma distribution]], but tends to be less skewed and tail-heavy. It is a [[:category:Continuous distributions|continuous distribution]] over the [[:category:Semi-bounded distributions|positive real numbers]]. | ||
+ | |||
+ | <center><code>Weibull(10, 4) →</code> [[Image:Weibull_graph.jpg]]</center> | ||
+ | |||
+ | == Functions == | ||
+ | Both parameters most be positive, i.e., <math>shape, scale > 0</math>. The «scale» parameter is optional and defaults to 1. | ||
+ | |||
+ | === Weibull(shape'', scale, over'') === | ||
+ | The distribution function. Use this to define a chance variable or other uncertain quantity as having a Weibull distribution. | ||
− | + | You can use the optional «over» parameter to generate independent and identically distributed distributions over one or more indicated indexes. | |
− | == | + | === <div id="DensWeibull">DensWeibull(x, shape'', scale'' )</div> === |
− | The | + | The density on <math>x\ge 0</math> is given by: |
+ | :<math>p(x) = {{shape}\over{scale}} \left({x\over{scale}}\right)^{shape-1} \exp\left(-(x/{scale})^{shape}\right)</math> | ||
+ | === <div id="CumWeibull">CumWeibull(x, shape'', scale'' )</div> === | ||
The Weibull distribution has a cumulative density on <math>x\ge 0</math> given by: | The Weibull distribution has a cumulative density on <math>x\ge 0</math> given by: | ||
− | :<math>F(x) = 1 - exp\left({-\left({x\over{scale}}\right)^{shape}}\right)</math> | + | :<math>F(x) = 1 - \exp\left({-\left({x\over{scale}}\right)^{shape}}\right)</math> |
− | |||
− | |||
− | + | and ''F(x) = 0'' for ''x < 0''. | |
+ | === <div id="CumWeibullInv">CumWeibullInv(p, shape'', scale'' )</div> === | ||
+ | The inverse cumulative distribution, or quantile function. Returns the «p»<sup>th</sup> fractile/quantile/percentile. | ||
− | = | + | :<math>F^{-1}(p) = scale * \left( \ln\left( 1\over{1-p} \right)\right)^{1/shape}</math> |
− | |||
− | == | + | == Statistics == |
− | + | The theoretical statistics (i.e., without sampling error) for the Weibull distribution are as follows. | |
+ | (TBD) | ||
− | |||
== Parameter Estimation == | == Parameter Estimation == |
Revision as of 00:25, 11 October 2018
Release: |
4.6 • 5.0 • 5.1 • 5.2 • 5.3 • 5.4 • 6.0 • 6.1 • 6.2 • 6.3 • 6.4 • 6.5 |
---|
The Weibull distribution is often used to represent failure time in reliability models. It is similar in shape to the gamma distribution, but tends to be less skewed and tail-heavy. It is a continuous distribution over the positive real numbers.
Weibull(10, 4) →

Functions
Both parameters most be positive, i.e., [math]\displaystyle{ shape, scale \gt 0 }[/math]. The «scale» parameter is optional and defaults to 1.
Weibull(shape, scale, over)
The distribution function. Use this to define a chance variable or other uncertain quantity as having a Weibull distribution.
You can use the optional «over» parameter to generate independent and identically distributed distributions over one or more indicated indexes.
DensWeibull(x, shape, scale )
The density on [math]\displaystyle{ x\ge 0 }[/math] is given by:
- [math]\displaystyle{ p(x) = {{shape}\over{scale}} \left({x\over{scale}}\right)^{shape-1} \exp\left(-(x/{scale})^{shape}\right) }[/math]
CumWeibull(x, shape, scale )
The Weibull distribution has a cumulative density on [math]\displaystyle{ x\ge 0 }[/math] given by:
- [math]\displaystyle{ F(x) = 1 - \exp\left({-\left({x\over{scale}}\right)^{shape}}\right) }[/math]
and F(x) = 0 for x < 0.
CumWeibullInv(p, shape, scale )
The inverse cumulative distribution, or quantile function. Returns the «p»th fractile/quantile/percentile.
- [math]\displaystyle{ F^{-1}(p) = scale * \left( \ln\left( 1\over{1-p} \right)\right)^{1/shape} }[/math]
Statistics
The theoretical statistics (i.e., without sampling error) for the Weibull distribution are as follows. (TBD)
Parameter Estimation
Suppose you have sampled historic data in Data
, indexed by I
, and you want to find the parameters for the best-fit Weibull distribution. The parameters can be estimated using a linear regression as follows:
Index bm := ['b', 'm'];
Var Fx := (Rank(Data, I) - 0.5)/Size(I);
Var Z := Ln(-Ln(1 - Fx));
Var fit := Regression(Z, Array(bm, [1, Ln(Data)]), I, bm);
Var shape := fit[bm = 'm'];
Var b := fit[bm = 'b'];
Var scale := Exp(-b/shape);
[shape, scale]
Enable comment auto-refresher