Difference between revisions of "Probability distributions"
(Created page with "Category:Analytica User Guide <breadcrumbs>Analytica User Guide > Probability Distributions > {{PAGENAME}}</breadcrumbs> __TOC__ ==See Also== <footer>Probability Dist...") |
|||
Line 4: | Line 4: | ||
__TOC__ | __TOC__ | ||
+ | The built-in Distribution library (available from the Definition menu) offers a wide range of distributions for discrete and continuous variables. (See [[Choosing an appropriate distribution |Is the quantity discrete or continuous?]]] and [[Glossary]] for an explanation of this distinction.) Some are standard or parametric distributions with just a few parameters, such as '''Normal''' and '''Uniform''', which are | ||
+ | continuous, and '''Bernoulli''' and '''Binomial''', which are discrete. Others are custom distributions, such as '''CumDist''', which lets you specify an array of points on a cumulative probability distribution, and [[Custom discrete probabilities#Probtable(): Probability Tables|'''Probtable''']], which lets you edit a table of probabilities for a discrete variable conditional on other discrete variables. | ||
+ | There are a variety of ways to create arrays of uncertain quantities, or [[multivariate distributions]]. You may set parameters to array values, specify an index to the optional Over parameter, or use functions from the '''Multivariate''' library. | ||
+ | You can find more information about various probability functions in the Analytica wiki: | ||
+ | |||
+ | ==Parametric Discrete== | ||
+ | * [[Bernoulli]]() | ||
+ | * [[Binomial]]() | ||
+ | * [[Poisson]]() | ||
+ | * [[Geometric]]() | ||
+ | * [[Hypergeometric]]() | ||
+ | * [[NegativeBinomial]]() | ||
+ | * [[Uniform]]() | ||
+ | * [[Wilcoxon]]() | ||
+ | |||
+ | ==Custom Discrete== | ||
+ | * [[Probtable]]() | ||
+ | * [[Determtable]]() | ||
+ | * [[Chancedist]]() | ||
+ | |||
+ | ==Special Probabilistic== | ||
+ | * [[Certain]]() | ||
+ | * [[Shuffle]]() | ||
+ | * [[Truncate]]() | ||
+ | * [[Random]]() | ||
+ | |||
+ | ==Parametric Continuous== | ||
+ | * [[Uniform]]() | ||
+ | * [[Triangular]]() | ||
+ | * [[Normal]]() | ||
+ | * [[Lognormal]]() | ||
+ | * [[Beta]]() | ||
+ | * [[Exponential]]() | ||
+ | * [[Gamma]]() | ||
+ | * [[Gamma]]() | ||
+ | * [[StudentT]]() | ||
+ | * [[Weibull]]() | ||
+ | * [[ChiSquared]]() | ||
+ | |||
+ | ==Custom Continuous== | ||
+ | * [[Cumdist]]() | ||
+ | * [[Probdist]]() | ||
+ | |||
+ | ==Multivariate== | ||
+ | * [[Normal_correl]]() | ||
+ | * [[Correlate_With]]() | ||
+ | * [[Dist_reshape]]() | ||
+ | * [[Correlate_Dists]]() | ||
+ | * [[Gaussian]]() | ||
+ | * [[MultiNormal]]() | ||
+ | * [[BiNormal]]() | ||
+ | * [[Dirichlet]]() | ||
+ | * [[Multinomial]]() | ||
+ | * [[UniformSpherical]]() | ||
+ | * [[MultiUniform]]() | ||
+ | * [[Normal_serial_correl]]() | ||
+ | * [[Dist_serial_correl]]() | ||
+ | * [[Normal_additive_gro]]() | ||
+ | * [[Dist_additive_growth]]() | ||
+ | * [[Normal_compound_gro]]() | ||
+ | * [[Dist_compound_growth]]() | ||
==See Also== | ==See Also== | ||
<footer>Probability Distributions / {{PAGENAME}} / Parametric discrete distributions</footer> | <footer>Probability Distributions / {{PAGENAME}} / Parametric discrete distributions</footer> |
Revision as of 01:09, 16 December 2015
The built-in Distribution library (available from the Definition menu) offers a wide range of distributions for discrete and continuous variables. (See Is the quantity discrete or continuous?] and Glossary for an explanation of this distinction.) Some are standard or parametric distributions with just a few parameters, such as Normal and Uniform, which are continuous, and Bernoulli and Binomial, which are discrete. Others are custom distributions, such as CumDist, which lets you specify an array of points on a cumulative probability distribution, and Probtable, which lets you edit a table of probabilities for a discrete variable conditional on other discrete variables.
There are a variety of ways to create arrays of uncertain quantities, or multivariate distributions. You may set parameters to array values, specify an index to the optional Over parameter, or use functions from the Multivariate library.
You can find more information about various probability functions in the Analytica wiki:
Parametric Discrete
- Bernoulli()
- Binomial()
- Poisson()
- Geometric()
- Hypergeometric()
- NegativeBinomial()
- Uniform()
- Wilcoxon()
Custom Discrete
- Probtable()
- Determtable()
- Chancedist()
Special Probabilistic
Parametric Continuous
- Uniform()
- Triangular()
- Normal()
- Lognormal()
- Beta()
- Exponential()
- Gamma()
- Gamma()
- StudentT()
- Weibull()
- ChiSquared()
Custom Continuous
Multivariate
- Normal_correl()
- Correlate_With()
- Dist_reshape()
- Correlate_Dists()
- Gaussian()
- MultiNormal()
- BiNormal()
- Dirichlet()
- Multinomial()
- UniformSpherical()
- MultiUniform()
- Normal_serial_correl()
- Dist_serial_correl()
- Normal_additive_gro()
- Dist_additive_growth()
- Normal_compound_gro()
- Dist_compound_growth()
Enable comment auto-refresher