Difference between revisions of "Math functions"

Line 15: Line 15:
 
:<code>Ceil(-7) &rarr; -7</code>
 
:<code>Ceil(-7) &rarr; -7</code>
  
'''[[Ceil]](x,digits)''': Returns the smallest number with the indicated of digits to the right of the decimal that is greater than or equal to x.
+
'''[[Ceil]](x, digits)''': Returns the smallest number with the indicated of digits to the right of the decimal that is greater than or equal to x.
:<code>Ceil(Pi,4) &rarr; 3.1416</code>
+
:<code>Ceil(Pi, 4) &rarr; 3.1416</code>
:<code>Ceil(-12345,-2) &rarr; -12300</code>
+
:<code>Ceil(-12345, -2) &rarr; -12300</code>
  
 
'''[[Floor]](x)''': Returns the largest integer that is smaller than or equal to <code>x</code>.
 
'''[[Floor]](x)''': Returns the largest integer that is smaller than or equal to <code>x</code>.
Line 25: Line 25:
 
:<code>Floor(-5) &rarr; -5</code>
 
:<code>Floor(-5) &rarr; -5</code>
  
'''[[Floor]](x,digits)''': Returns the largest number with the indicated number of digits past the decimal that is less than or equal to <code>x</code>.
+
'''[[Floor]](x, digits)''': Returns the largest number with the indicated number of digits past the decimal that is less than or equal to <code>x</code>.
:<code>Floor(Pi,4) &rarr; 3.1415</code>
+
:<code>Floor(Pi, 4) &rarr; 3.1415</code>
:<code>Floor(-12345,-2) &rarr; -12400</code>
+
:<code>Floor(-12345, -2) &rarr; -12400</code>
  
 
'''[[Round]](x)''': Returns the value of <code>x</code> rounded to the nearest integer.
 
'''[[Round]](x)''': Returns the value of <code>x</code> rounded to the nearest integer.
Line 35: Line 35:
 
:<code>Round(-2.499) &rarr; -2</code>
 
:<code>Round(-2.499) &rarr; -2</code>
  
'''[[Round]](x,digits)''': Rounds the value of <code>x</code> to the indicated number of decimal digits to the right of the decimal point.
+
'''[[Round]](x, digits)''': Rounds the value of <code>x</code> to the indicated number of decimal digits to the right of the decimal point.
:<code>Round(Pi,1) &rarr; 3.100</code>
+
:<code>Round(Pi, 1) &rarr; 3.100</code>
:<code>Round(Pi,3) &rarr; 3.142</code>
+
:<code>Round(Pi, 3) &rarr; 3.142</code>
:<code>Round(14243.4,-2) &rarr; 14200</code>
+
:<code>Round(14243.4, -2) &rarr; 14200</code>
  
 
'''''Note: '''The Number Format setting determines how many digits are included when a number is displayed, while Round(x,digits) returns a new rounded number so that the rounded value can be used in subsequent computations.''
 
'''''Note: '''The Number Format setting determines how many digits are included when a number is displayed, while Round(x,digits) returns a new rounded number so that the rounded value can be used in subsequent computations.''
Line 52: Line 52:
 
'''[[Logten]](x)''': Returns the logarithm to the base 10 of <code>x</code>, which must be positive unless the system variable <code>EnableComplexNumbers</code> is set.
 
'''[[Logten]](x)''': Returns the logarithm to the base 10 of <code>x</code>, which must be positive unless the system variable <code>EnableComplexNumbers</code> is set.
 
:<code>Logten(180) &rarr; 2.255</code>
 
:<code>Logten(180) &rarr; 2.255</code>
:<code>Logten(10 ^ 30) &rarr; 30</code>
+
:<code>Logten(10^30) &rarr; 30</code>
  
 
'''[[Sign]](x)''': Returns -1 when <code>x</code> is negative, 1 when <code>x</code> is positive, 0 when <code>x</code> is zero, and <code>NaN</code> when x is <code>NaN</code>.
 
'''[[Sign]](x)''': Returns -1 when <code>x</code> is negative, 1 when <code>x</code> is positive, 0 when <code>x</code> is zero, and <code>NaN</code> when x is <code>NaN</code>.
 
:<code>Sign(-15.2) &rarr; -1</code>
 
:<code>Sign(-15.2) &rarr; -1</code>
 
:<code>Sign(7.3) &rarr; 1</code>
 
:<code>Sign(7.3) &rarr; 1</code>
:<code>Sign(0)&rarr; 0</code>
+
:<code>Sign(0) &rarr; 0</code>
 
:<code>Sign(0/0) &rarr; NaN</code>
 
:<code>Sign(0/0) &rarr; NaN</code>
  
Line 66: Line 66:
 
'''[[Sqrt]](x)''': Returns the square root of <code>x</code>. x must be positive unless the system variable <code>EnableComplex-Numbers</code> is set.
 
'''[[Sqrt]](x)''': Returns the square root of <code>x</code>. x must be positive unless the system variable <code>EnableComplex-Numbers</code> is set.
 
:<code>Sqrt(25) &rarr; 5 </code>
 
:<code>Sqrt(25) &rarr; 5 </code>
:<code>Sqrt(-1)&rarr; NAN</code>
+
:<code>Sqrt(-1) &rarr; NAN</code>
 
:<code>Sqrt(-1) &rarr; 1j ''{ when EnableComplexNumbers is set }''</code>
 
:<code>Sqrt(-1) &rarr; 1j ''{ when EnableComplexNumbers is set }''</code>
  
 
'''[[Mod]](x, y)''': Returns the remainder (modulus) of <code>x/y</code>.
 
'''[[Mod]](x, y)''': Returns the remainder (modulus) of <code>x/y</code>.
:<code>Mod(7, 3)&rarr; 1</code>
+
:<code>Mod(7, 3) &rarr; 1</code>
 
:<code>Mod(12, 4) &rarr; 0</code>
 
:<code>Mod(12, 4) &rarr; 0</code>
 
:<code>Mod(-14, 5) &rarr; -4</code>
 
:<code>Mod(-14, 5) &rarr; -4</code>

Revision as of 23:37, 6 December 2015


These functions can be accessed from the Math library from the Definition menu.

Abs(x): Returns the absolute value of x. When x in complex, returns the magnitude, see Complex number functions.

Abs(180) → 180
Abs(-210) → 210

Ceil(x): Returns the smallest integer that is greater than or equal to x.

Ceil(3.1) → 4
Ceil(5) → 5
Ceil(-2.9999) → -2
Ceil(-7) → -7

Ceil(x, digits): Returns the smallest number with the indicated of digits to the right of the decimal that is greater than or equal to x.

Ceil(Pi, 4) → 3.1416
Ceil(-12345, -2) → -12300

Floor(x): Returns the largest integer that is smaller than or equal to x.

Floor(2.999) → 2
Floor(3) → 3
Floor(-2.01) → -3
Floor(-5) → -5

Floor(x, digits): Returns the largest number with the indicated number of digits past the decimal that is less than or equal to x.

Floor(Pi, 4) → 3.1415
Floor(-12345, -2) → -12400

Round(x): Returns the value of x rounded to the nearest integer.

Round(1.8) → 2
Round(-2.8) → -3
Round(1.499) → 1
Round(-2.499) → -2

Round(x, digits): Rounds the value of x to the indicated number of decimal digits to the right of the decimal point.

Round(Pi, 1) → 3.100
Round(Pi, 3) → 3.142
Round(14243.4, -2) → 14200

Note: The Number Format setting determines how many digits are included when a number is displayed, while Round(x,digits) returns a new rounded number so that the rounded value can be used in subsequent computations.

Exp(x): Returns the exponential of x, e raised to the power of x.

Exp(5) → 148.4
Exp(-4) → 0.01832

Ln(x): Returns the natural logarithm of x, which must be positive unless the system variable Enable-ComplexNumbers is set.

Ln(150) → 5.011
Ln(Exp(5)) → 5

Logten(x): Returns the logarithm to the base 10 of x, which must be positive unless the system variable EnableComplexNumbers is set.

Logten(180) → 2.255
Logten(10^30) → 30

Sign(x): Returns -1 when x is negative, 1 when x is positive, 0 when x is zero, and NaN when x is NaN.

Sign(-15.2) → -1
Sign(7.3) → 1
Sign(0) → 0
Sign(0/0) → NaN

Sqr(x): Returns the square of x.

Sqr(5) → 25
Sqr(-4) → 16

Sqrt(x): Returns the square root of x. x must be positive unless the system variable EnableComplex-Numbers is set.

Sqrt(25) → 5
Sqrt(-1) → NAN
Sqrt(-1) → 1j { when EnableComplexNumbers is set }

Mod(x, y): Returns the remainder (modulus) of x/y.

Mod(7, 3) → 1
Mod(12, 4) → 0
Mod(-14, 5) → -4

Factorial(x): Returns the factorial of x, which must be between 0 and 170.

Factorial(5) → 120
Factorial(0) → 1

If x is not an integer, it rounds x to the nearest integer before taking the factorial.

Cos(x), Sin(x), Tan(x): Returns the cosine, sine, and tangent of x, x assumed in degrees.

Cos(180) → -1
Cos(-210) → -0.866
Sin(30) → 0.5
Sin(-45) → -0.7071
Tan(45) → 1

Arctan(x): Returns the arctangent of x in degrees (the inverse of Tan).

Arctan(0) → 0
Arctan(1) → 45
Arctan(Tan(45)) → 45

See also Arccos(x), Arcsin(x), Arctan2(y, x) and Advanced math functions.

Degrees(r), Radians(d): Degrees gives degrees from radians, and radians gives radians from degrees

Degrees(Pi/2) → 90
Degrees(-Pi) → -180
Degrees(90) → -1.57079633
Degrees(180) → 3.141592654

See Also

Comments


You are not allowed to post comments.