Difference between revisions of "Math functions"
Line 15: | Line 15: | ||
:<code>Ceil(-7) → -7</code> | :<code>Ceil(-7) → -7</code> | ||
− | '''[[Ceil]](x,digits)''': Returns the smallest number with the indicated of digits to the right of the decimal that is greater than or equal to x. | + | '''[[Ceil]](x, digits)''': Returns the smallest number with the indicated of digits to the right of the decimal that is greater than or equal to x. |
− | :<code>Ceil(Pi,4) → 3.1416</code> | + | :<code>Ceil(Pi, 4) → 3.1416</code> |
− | :<code>Ceil(-12345,-2) → -12300</code> | + | :<code>Ceil(-12345, -2) → -12300</code> |
'''[[Floor]](x)''': Returns the largest integer that is smaller than or equal to <code>x</code>. | '''[[Floor]](x)''': Returns the largest integer that is smaller than or equal to <code>x</code>. | ||
Line 25: | Line 25: | ||
:<code>Floor(-5) → -5</code> | :<code>Floor(-5) → -5</code> | ||
− | '''[[Floor]](x,digits)''': Returns the largest number with the indicated number of digits past the decimal that is less than or equal to <code>x</code>. | + | '''[[Floor]](x, digits)''': Returns the largest number with the indicated number of digits past the decimal that is less than or equal to <code>x</code>. |
− | :<code>Floor(Pi,4) → 3.1415</code> | + | :<code>Floor(Pi, 4) → 3.1415</code> |
− | :<code>Floor(-12345,-2) → -12400</code> | + | :<code>Floor(-12345, -2) → -12400</code> |
'''[[Round]](x)''': Returns the value of <code>x</code> rounded to the nearest integer. | '''[[Round]](x)''': Returns the value of <code>x</code> rounded to the nearest integer. | ||
Line 35: | Line 35: | ||
:<code>Round(-2.499) → -2</code> | :<code>Round(-2.499) → -2</code> | ||
− | '''[[Round]](x,digits)''': Rounds the value of <code>x</code> to the indicated number of decimal digits to the right of the decimal point. | + | '''[[Round]](x, digits)''': Rounds the value of <code>x</code> to the indicated number of decimal digits to the right of the decimal point. |
− | :<code>Round(Pi,1) → 3.100</code> | + | :<code>Round(Pi, 1) → 3.100</code> |
− | :<code>Round(Pi,3) → 3.142</code> | + | :<code>Round(Pi, 3) → 3.142</code> |
− | :<code>Round(14243.4,-2) → 14200</code> | + | :<code>Round(14243.4, -2) → 14200</code> |
'''''Note: '''The Number Format setting determines how many digits are included when a number is displayed, while Round(x,digits) returns a new rounded number so that the rounded value can be used in subsequent computations.'' | '''''Note: '''The Number Format setting determines how many digits are included when a number is displayed, while Round(x,digits) returns a new rounded number so that the rounded value can be used in subsequent computations.'' | ||
Line 52: | Line 52: | ||
'''[[Logten]](x)''': Returns the logarithm to the base 10 of <code>x</code>, which must be positive unless the system variable <code>EnableComplexNumbers</code> is set. | '''[[Logten]](x)''': Returns the logarithm to the base 10 of <code>x</code>, which must be positive unless the system variable <code>EnableComplexNumbers</code> is set. | ||
:<code>Logten(180) → 2.255</code> | :<code>Logten(180) → 2.255</code> | ||
− | :<code>Logten(10 ^ 30) → 30</code> | + | :<code>Logten(10^30) → 30</code> |
'''[[Sign]](x)''': Returns -1 when <code>x</code> is negative, 1 when <code>x</code> is positive, 0 when <code>x</code> is zero, and <code>NaN</code> when x is <code>NaN</code>. | '''[[Sign]](x)''': Returns -1 when <code>x</code> is negative, 1 when <code>x</code> is positive, 0 when <code>x</code> is zero, and <code>NaN</code> when x is <code>NaN</code>. | ||
:<code>Sign(-15.2) → -1</code> | :<code>Sign(-15.2) → -1</code> | ||
:<code>Sign(7.3) → 1</code> | :<code>Sign(7.3) → 1</code> | ||
− | :<code>Sign(0)→ 0</code> | + | :<code>Sign(0) → 0</code> |
:<code>Sign(0/0) → NaN</code> | :<code>Sign(0/0) → NaN</code> | ||
Line 66: | Line 66: | ||
'''[[Sqrt]](x)''': Returns the square root of <code>x</code>. x must be positive unless the system variable <code>EnableComplex-Numbers</code> is set. | '''[[Sqrt]](x)''': Returns the square root of <code>x</code>. x must be positive unless the system variable <code>EnableComplex-Numbers</code> is set. | ||
:<code>Sqrt(25) → 5 </code> | :<code>Sqrt(25) → 5 </code> | ||
− | :<code>Sqrt(-1)→ NAN</code> | + | :<code>Sqrt(-1) → NAN</code> |
:<code>Sqrt(-1) → 1j ''{ when EnableComplexNumbers is set }''</code> | :<code>Sqrt(-1) → 1j ''{ when EnableComplexNumbers is set }''</code> | ||
'''[[Mod]](x, y)''': Returns the remainder (modulus) of <code>x/y</code>. | '''[[Mod]](x, y)''': Returns the remainder (modulus) of <code>x/y</code>. | ||
− | :<code>Mod(7, 3)→ 1</code> | + | :<code>Mod(7, 3) → 1</code> |
:<code>Mod(12, 4) → 0</code> | :<code>Mod(12, 4) → 0</code> | ||
:<code>Mod(-14, 5) → -4</code> | :<code>Mod(-14, 5) → -4</code> |
Revision as of 23:37, 6 December 2015
These functions can be accessed from the Math library from the Definition menu.
Abs(x): Returns the absolute value of x
. When x
in complex, returns the magnitude, see Complex number functions.
Abs(180) → 180
Abs(-210) → 210
Ceil(x): Returns the smallest integer that is greater than or equal to x
.
Ceil(3.1) → 4
Ceil(5) → 5
Ceil(-2.9999) → -2
Ceil(-7) → -7
Ceil(x, digits): Returns the smallest number with the indicated of digits to the right of the decimal that is greater than or equal to x.
Ceil(Pi, 4) → 3.1416
Ceil(-12345, -2) → -12300
Floor(x): Returns the largest integer that is smaller than or equal to x
.
Floor(2.999) → 2
Floor(3) → 3
Floor(-2.01) → -3
Floor(-5) → -5
Floor(x, digits): Returns the largest number with the indicated number of digits past the decimal that is less than or equal to x
.
Floor(Pi, 4) → 3.1415
Floor(-12345, -2) → -12400
Round(x): Returns the value of x
rounded to the nearest integer.
Round(1.8) → 2
Round(-2.8) → -3
Round(1.499) → 1
Round(-2.499) → -2
Round(x, digits): Rounds the value of x
to the indicated number of decimal digits to the right of the decimal point.
Round(Pi, 1) → 3.100
Round(Pi, 3) → 3.142
Round(14243.4, -2) → 14200
Note: The Number Format setting determines how many digits are included when a number is displayed, while Round(x,digits) returns a new rounded number so that the rounded value can be used in subsequent computations.
Exp(x): Returns the exponential of x
, e
raised to the power of x
.
Exp(5) → 148.4
Exp(-4) → 0.01832
Ln(x): Returns the natural logarithm of x
, which must be positive unless the system variable Enable-ComplexNumbers
is set.
Ln(150) → 5.011
Ln(Exp(5)) → 5
Logten(x): Returns the logarithm to the base 10 of x
, which must be positive unless the system variable EnableComplexNumbers
is set.
Logten(180) → 2.255
Logten(10^30) → 30
Sign(x): Returns -1 when x
is negative, 1 when x
is positive, 0 when x
is zero, and NaN
when x is NaN
.
Sign(-15.2) → -1
Sign(7.3) → 1
Sign(0) → 0
Sign(0/0) → NaN
Sqr(x): Returns the square of x
.
Sqr(5) → 25
Sqr(-4) → 16
Sqrt(x): Returns the square root of x
. x must be positive unless the system variable EnableComplex-Numbers
is set.
Sqrt(25) → 5
Sqrt(-1) → NAN
Sqrt(-1) → 1j { when EnableComplexNumbers is set }
Mod(x, y): Returns the remainder (modulus) of x/y
.
Mod(7, 3) → 1
Mod(12, 4) → 0
Mod(-14, 5) → -4
Factorial(x): Returns the factorial of x
, which must be between 0 and 170.
Factorial(5) → 120
Factorial(0) → 1
If x
is not an integer, it rounds x
to the nearest integer before taking the factorial.
Cos(x), Sin(x), Tan(x): Returns the cosine, sine, and tangent of x
, x
assumed in degrees.
Cos(180) → -1
Cos(-210) → -0.866
Sin(30) → 0.5
Sin(-45) → -0.7071
Tan(45) → 1
Arctan(x): Returns the arctangent of x
in degrees (the inverse of Tan).
Arctan(0) → 0
Arctan(1) → 45
Arctan(Tan(45)) → 45
See also Arccos(x), Arcsin(x), Arctan2(y, x) and Advanced math functions.
Degrees(r), Radians(d): Degrees gives degrees from radians, and radians gives radians from degrees
Degrees(Pi/2) → 90
Degrees(-Pi) → -180
Degrees(90) → -1.57079633
Degrees(180) → 3.141592654
Enable comment auto-refresher