GammaFn

Revision as of 19:00, 18 May 2007 by Lchrisman (talk | contribs)


GammaFn(x)

The complete gamma function.

One way to think of the gamma function is as a generalization of the Factorial function. Whereas, the factorial function has a range over the whole numbers, the Gamma function has a range over positive real numbers. The relationship between the gamma function and factorial is:

n! = GammaFn(n+1)

The gamma function grows very quickly, resulting in a numeric overflow when x>171. The LGamma function computes the natural logarithm of the gamma function, and therefore can be used over much wider ranges.

Library

Advanced Math

See Also

  • LGamma : Natural log of the gamma function.
  • GammaI : The incomplete gamma function.
  • Gamma : The gamma distribution
  • BetaFn : The complete beta function
Comments


You are not allowed to post comments.