Difference between revisions of "CubicInterp"
(updated d+r to xi+yi) |
|||
Line 5: | Line 5: | ||
== CubicInterp(xi, yi, x, ''i'') == | == CubicInterp(xi, yi, x, ''i'') == | ||
− | Given arrays of numerical coordinates «xi» and «yi», indexed by «i», it returns the y value corresponding to parameter «x», using cubic interpolation between the two values of «xi» nearest to «x». «xi», «yi», and «x» must be numbers. The numbers in «xi» must be in increasing order. If «xi» is itself a simple index, «yi» must be indexed by «xi», and parameter «i» may be omitted. Otherwise, «i» must be a common index of «xi» and «yi». «x» may be a scalar or have any dimensions. If «x» is less than the smallest (and first) value in «xi» (x < xi[@i=1]), it returns that smallest value. Similarly, if «x» is larger than the largest (and last) value in «d» (x > xi[@i=Size(i)]), it returns that largest value. | + | Given arrays of numerical coordinates «xi» and «yi», indexed by «i», it returns the y value corresponding to parameter «x», using cubic interpolation between the two values of «xi» nearest to «x». «xi», «yi», and «x» must be numbers. The numbers in «xi» must be in increasing order. If «xi» is itself a simple index, «yi» must be indexed by «xi», and parameter «i» may be omitted. Otherwise, «i» must be a common index of «xi» and «yi». «x» may be a scalar or have any dimensions. If «x» is less than the smallest (and first) value in «xi» ''(x < xi[@i = 1]''), it returns that smallest value. Similarly, if «x» is larger than the largest (and last) value in «d» (''x > xi[@i = Size(i)]''), it returns that largest value. |
Points having either «ci» or «yi» equal to [[Null]] are ignored. When «x» is [[Null]], the result is [[Null]]. | Points having either «ci» or «yi» equal to [[Null]] are ignored. When «x» is [[Null]], the result is [[Null]]. | ||
− | [[Image:Cubicinterp-graph.png]] | + | :[[Image:Cubicinterp-graph.png]] |
A cubic interpolation can vary wildly from the actual values of the data points. In the above graph, all the «yi» values are positive, yet the interpolation is as small as -22.5 around x=33. Even if the «yi» values are monotonically increasing, this does not mean that the cubic interpolation will be monotonically increasing. The [[MonoCubicInterp]] function is a variation that provides a guarantee of monotonicity. | A cubic interpolation can vary wildly from the actual values of the data points. In the above graph, all the «yi» values are positive, yet the interpolation is as small as -22.5 around x=33. Even if the «yi» values are monotonically increasing, this does not mean that the cubic interpolation will be monotonically increasing. The [[MonoCubicInterp]] function is a variation that provides a guarantee of monotonicity. | ||
Line 16: | Line 16: | ||
The following example can be found in the [[User Guide Examples]]. | The following example can be found in the [[User Guide Examples]]. | ||
− | <code>Cubicinterp(Index_b, Array_a, 1.5, Index_b) | + | :<code>Cubicinterp(Index_b, Array_a, 1.5, Index_b) →</code> |
− | {| class="wikitable" | + | :{| class="wikitable" |
!! colspan="3" style="text-align: left;" | a ▶ | !! colspan="3" style="text-align: left;" | a ▶ | ||
|- | |- | ||
Line 35: | Line 35: | ||
=== ''extrapolationMethod'' === | === ''extrapolationMethod'' === | ||
Specifies the value to return if «x» is outside the values of «xi»: | Specifies the value to return if «x» is outside the values of «xi»: | ||
− | *1: Use the «yi» for nearest «xi» (default method) | + | *<code>1</code>: Use the «yi» for nearest «xi» (default method) |
− | *2: Return [[Null]] | + | *<code>2</code>: Return [[Null]] |
− | *3: Same as 1 (nearest point) for normal evaluation, but [[Null]] during optimization. | + | *<code>3</code>: Same as <code>1</code> (nearest point) for normal evaluation, but [[Null]] during optimization. |
== History == | == History == |
Latest revision as of 23:04, 22 January 2016
CubicInterp(xi, yi, x, i)
Given arrays of numerical coordinates «xi» and «yi», indexed by «i», it returns the y value corresponding to parameter «x», using cubic interpolation between the two values of «xi» nearest to «x». «xi», «yi», and «x» must be numbers. The numbers in «xi» must be in increasing order. If «xi» is itself a simple index, «yi» must be indexed by «xi», and parameter «i» may be omitted. Otherwise, «i» must be a common index of «xi» and «yi». «x» may be a scalar or have any dimensions. If «x» is less than the smallest (and first) value in «xi» (x < xi[@i = 1]), it returns that smallest value. Similarly, if «x» is larger than the largest (and last) value in «d» (x > xi[@i = Size(i)]), it returns that largest value.
Points having either «ci» or «yi» equal to Null are ignored. When «x» is Null, the result is Null.
A cubic interpolation can vary wildly from the actual values of the data points. In the above graph, all the «yi» values are positive, yet the interpolation is as small as -22.5 around x=33. Even if the «yi» values are monotonically increasing, this does not mean that the cubic interpolation will be monotonically increasing. The MonoCubicInterp function is a variation that provides a guarantee of monotonicity.
Example
The following example can be found in the User Guide Examples.
Cubicinterp(Index_b, Array_a, 1.5, Index_b) →
a ▶ a b c 0.6875 -2.875 2.219
Optional Parameters
i
Specifies the common index of «xi» and «yi». You can omit this, if «xi» is itself an index of «yi».
extrapolationMethod
Specifies the value to return if «x» is outside the values of «xi»:
1
: Use the «yi» for nearest «xi» (default method)2
: Return Null3
: Same as1
(nearest point) for normal evaluation, but Null during optimization.
History
- Analytica 4.1+
- Null values allowed in «xi» and «yi».
See also
- MonoCubicInterp
- LinearInterp
- StepInterp
- User Guide Examples / Array Function Examples.ana / Interpolation Functions Module
Enable comment auto-refresher