Difference between revisions of "Calloption"

 
(5 intermediate revisions by the same user not shown)
Line 17: Line 17:
 
Function definition:  
 
Function definition:  
 
:<code>USING d1 := (ln(s/x) + t*(r + (0.5*theta^2)))/(theta*t^0.5)</code>
 
:<code>USING d1 := (ln(s/x) + t*(r + (0.5*theta^2)))/(theta*t^0.5)</code>
::<code>DO s*Cumnormal(d1) - (x*exp(-r*t)*Cumnormal(d1 - (theta*t^0.5)))</code>
+
::<code>DO s*CumNormal(d1) - (x*exp(-r*t)*CumNormal(d1 - (theta*t^0.5)))</code>
  
 
==Library==
 
==Library==
[[Financial library functions]]
+
[[Financial library functions]] ([[media:Financial Library.ana|Financial Library.ana]])
 +
:Use [[File menu|File]] &rarr; '''Add Library...''' to add this library
  
 
==Example==
 
==Example==
Line 26: Line 27:
  
 
==See Also==
 
==See Also==
* [[Cumnormal]]
+
* [[CumNormal]]
 
* [[Putoption]]
 
* [[Putoption]]
 +
* [[Capm]]
 +
* [[Wacc]]
 +
* [[media:Financial Library.ana|Financial Library.ana]]
 
* [[Financial library functions]]
 
* [[Financial library functions]]
 
* [[Financial functions]]
 
* [[Financial functions]]

Latest revision as of 20:38, 24 May 2016


Function Calloption(s, x, t, r, theta)

Calculates the value of a call option using the Black-Scholes formula.

Syntax:

Calloption(s, x, t, r, theta : Numeric)

Parameters:

«s»
the price of the security now
«s»
the exercise price
«'t»
the time in years to exercise
«r»
the risk-free interest rate
«theta»
the volatility of the security

Function definition:

USING d1 := (ln(s/x) + t*(r + (0.5*theta^2)))/(theta*t^0.5)
DO s*CumNormal(d1) - (x*exp(-r*t)*CumNormal(d1 - (theta*t^0.5)))

Library

Financial library functions (Financial Library.ana)

Use FileAdd Library... to add this library

Example

Calloption(50, 50, 0.25, 0.05, 0.3) → 3.292

See Also

Comments


You are not allowed to post comments.