Difference between revisions of "Determinant"

m (adding doc status category)
(Elaborated)
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
[[category:Matrix Functions]]
 
[[category:Matrix Functions]]
[[Category:Doc Status C]] <!-- For Lumina use, do not change -->
+
[[category:Array-reducing functions]]
 +
[[Category:Doc Status D]] <!-- For Lumina use, do not change -->
  
Determinant(C,I,J)
+
==Determinant(c, I, J)==
  
The determinant of a matrix.
+
Computes the determinant of a square matrix, «c». Indexes «<code>I</code>» and «<code>J</code>» must be the same length, so that the matrix is square.
 +
 
 +
The determinant of a matrix is a useful value that is used heavily in linear algebra and matrix applications. The [[Invert|inverse]] of a matrix exists and is unique if and only if the determinant is non-zero. 
 +
 
 +
Geometrically, the determinant can be viewed as the N-dimensional volume of the N-dimensional parallelepiped formed from the vectors in matrix «c». A parallelepiped in the N-dimensional generalization of a parallelogram (a 2-D parallelepiped is a parallelogram). Each vertex of the parallelepiped is obtained by taking a subset of the slices along «<code>J</code>» and adding them together. The empty subset is the origin. There are <code>2^N</code> subsets, where <code>N=[[Size]](J)</code>. 
 +
 
 +
== Examples ==
 +
 
 +
The determinant of the identity matrix is 1.
 +
:<code>Determinant(I=J,I,J) &rarr; 1</code>
 +
 
 +
With <code>c</code> &rarr; [[image:Determinant_example1.png]],
 +
:<code>Determinant(c,I,J)</code> &rarr; 15
 +
 
 +
With <code>c</code> &rarr; [[image:Determinant_example2.png]],
 +
:<code>Determinant(c,I,J)</code> &rarr; -114 - 68j
 +
 
 +
 
 +
:<code>Variable Matrix :=</code>
 +
:{| class="wikitable"
 +
!
 +
! colspan="5" |M &#9654;
 +
|-
 +
!L &#9660;
 +
!1
 +
!2
 +
!3
 +
!4
 +
!5
 +
|-
 +
!1
 +
|6
 +
|2
 +
|6
 +
|3
 +
|1
 +
|-
 +
!2
 +
|2
 +
|4
 +
|3
 +
|1
 +
|3
 +
|-
 +
!3
 +
|6
 +
|3
 +
|9
 +
|3
 +
|4
 +
|-
 +
!4
 +
|3
 +
|1
 +
|3
 +
|8
 +
|4
 +
|-
 +
!5
 +
|1
 +
|3
 +
|4
 +
|4
 +
|7
 +
|}
 +
 
 +
:<code>Determinant(Matrix,L,M) &rarr; 359</code>
 +
 
 +
==See Also==
 +
* [[MatrixMultiply]]
 +
* [[Decompose]]
 +
* [[Matrix functions]]
 +
* [[:Category:Matrix Functions]]

Latest revision as of 18:51, 24 March 2016


Determinant(c, I, J)

Computes the determinant of a square matrix, «c». Indexes «I» and «J» must be the same length, so that the matrix is square.

The determinant of a matrix is a useful value that is used heavily in linear algebra and matrix applications. The inverse of a matrix exists and is unique if and only if the determinant is non-zero.

Geometrically, the determinant can be viewed as the N-dimensional volume of the N-dimensional parallelepiped formed from the vectors in matrix «c». A parallelepiped in the N-dimensional generalization of a parallelogram (a 2-D parallelepiped is a parallelogram). Each vertex of the parallelepiped is obtained by taking a subset of the slices along «J» and adding them together. The empty subset is the origin. There are 2^N subsets, where N=Size(J).

Examples

The determinant of the identity matrix is 1.

Determinant(I=J,I,J) → 1

With cDeterminant example1.png,

Determinant(c,I,J) → 15

With cDeterminant example2.png,

Determinant(c,I,J) → -114 - 68j


Variable Matrix :=
M ▶
L ▼ 1 2 3 4 5
1 6 2 6 3 1
2 2 4 3 1 3
3 6 3 9 3 4
4 3 1 3 8 4
5 1 3 4 4 7
Determinant(Matrix,L,M) → 359

See Also

Comments


You are not allowed to post comments.