Partitions
New to Analytica 5.0
Partitions(k, n)
Returns the number of different ways that «n» objects can be partitioned into «k» non-empty groups. This is called the Sterling number of the second kind.
Examples
Partitions( 3, 5 )
→ 25
The groupings would be:
- {a, b, c}, {d}, {e}
- {a, b, d}, {c}, {e}
- {a, b, e}, {c}, {d}
- {a, c, d}, {b}, {e}
- {a, c, e}, {b}, {d}
- {a, d, e}, {b}, {c}
- {b, c, d}, {a}, {e}
- {b, c, e}, {a}, {d}
- {b, d, e}, {a}, {c}
- {c, d, e}, {a}, {b}
- {a, b}, {c, d}, {e}
- {a, b}, (c}, {d, e}
- {a, b}, {c, e}, {d}
- {a, c}, {b, d}, {e}
- {a, c}, {b}, {d, e}
- {a, c}, {b, e}, {d}
- {a, d}, {b, c}, {e}
- {a, d}, {b}, {c, e}
- {a, d}, {c, e}, {d}
- {a, e}, {b, d}, {c}
- {a, e}, {b}, {d, c}
- {a, e}, {b, c}, {d}
- {b, c}, {a}, {d, e}
- {b, d}, {a}, {c, e}
- {b, e}, {a}, {c, d}
See Also
Comments
Enable comment auto-refresher