Difference between revisions of "BetaFn"
Line 3: | Line 3: | ||
== BetaFn(a, b) == | == BetaFn(a, b) == | ||
− | The complete beta function, defined as: | + | The complete [[beta]] function, defined as: |
:<math>BetaFn(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx</math> | :<math>BetaFn(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx</math> | ||
Line 10: | Line 10: | ||
== See Also == | == See Also == | ||
+ | * [[Beta]] | ||
* [[BetaI]] : The incomplete beta function | * [[BetaI]] : The incomplete beta function | ||
* [[GammaFn]] : The complete gamma function | * [[GammaFn]] : The complete gamma function | ||
+ | * [[Parametric continuous distributions]] | ||
+ | * [[Distribution Densities Library]] |
Revision as of 02:02, 3 February 2016
BetaFn(a, b)
The complete beta function, defined as:
- [math]\displaystyle{ BetaFn(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx }[/math]
Library
Advanced Math
See Also
- Beta
- BetaI : The incomplete beta function
- GammaFn : The complete gamma function
- Parametric continuous distributions
- Distribution Densities Library
Comments
Enable comment auto-refresher