Difference between revisions of "BetaFn"

Line 3: Line 3:
  
 
== BetaFn(a, b) ==
 
== BetaFn(a, b) ==
The complete beta function, defined as:
+
The complete [[beta]] function, defined as:
 
:<math>BetaFn(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx</math>
 
:<math>BetaFn(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx</math>
  
Line 10: Line 10:
  
 
== See Also ==
 
== See Also ==
 +
* [[Beta]]
 
* [[BetaI]] : The incomplete beta function
 
* [[BetaI]] : The incomplete beta function
 
* [[GammaFn]] : The complete gamma function
 
* [[GammaFn]] : The complete gamma function
 +
* [[Parametric continuous distributions]]
 +
* [[Distribution Densities Library]]

Revision as of 02:02, 3 February 2016


BetaFn(a, b)

The complete beta function, defined as:

[math]\displaystyle{ BetaFn(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx }[/math]

Library

Advanced Math

See Also

Comments


You are not allowed to post comments.