Difference between revisions of "Concepts Covered in the Airline NLP Example"
Jhernandez3 (talk | contribs) (Created page with "Concepts") |
|||
(9 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | [[Category: Analytica Optimizer Guide]] | |
+ | <breadcrumbs> Analytica Optimizer Guide > Optimizer key concepts: Airline Example> {{PAGENAME}}</breadcrumbs><br /> | ||
+ | |||
+ | Before reading this chapter, you should already be familiar with the basic parameters of [[DefineOptimization]]() and [[OptSolution]]() functions, as discussed in the [[Quick Start]], and the roles of intrinsic and extrinsic indexes in optimization, as discussed in [[Arrays in Optimization Models and Array Abstraction]]. | ||
+ | |||
+ | Additionally, Modules 3 and 4 of the Airline NLP example assume familiarity with Monte Carlo simulation and Probability Distributions (see [[Statistics, Sensitivity, and Uncertainty Analysis]] in the Analytica User Guide). | ||
+ | |||
+ | Module 7 assumes familiarity with the [[Dynamic]]() function (see [[Dynamic Simulation]] in the Analytica User Guide). | ||
+ | |||
+ | Topics relevant to all optimization types (LP, QP, and NLP) are: | ||
+ | * '''[[Airline_NLP_Module_1%3A_Base_Case|Module 1]]'''[[Airline_NLP_Module_1%3A_Base_Case|: Setting up basic Airline NLP example]] | ||
+ | * '''[[Using_Parametric_Analysis%3A_Airline_NLP_Module_2|Module 2]]'''[[Using_Parametric_Analysis%3A_Airline_NLP_Module_2|: Parametric Analysis]] | ||
+ | * Combining uncertainty with optimization: | ||
+ | ** '''[[Optimizing_with_Uncertainty#Module_3:_Stochastic_Optimization_.28FAST.29|Module 3]]'''[[Optimizing_with_Uncertainty#Module_3:_Stochastic_Optimization_.28FAST.29|: Optimizing on Fractiles or Averages Stochastically (FAST)]] | ||
+ | ** '''[[Optimizing_with_Uncertainty#Module_4:_Multiple_Optimizations_of_Separate_Samples_.28MOSS.29|Module 4]]'''[[Optimizing_with_Uncertainty#Module_4:_Multiple_Optimizations_of_Separate_Samples_.28MOSS.29|: Multiple Optimizations of Separate Samples (MOSS) method]] | ||
+ | |||
+ | * '''[[Module_5%3A_Time_as_an_Extrinsic_index|Module 5]]'''[[Module_5%3A_Time_as_an_Extrinsic_index|: Abstracted objectives; example of Time as an extrinsic index]] | ||
+ | * '''[[Module_6%3A_Time_as_an_Intrinsic_Index|Module 6]]'''[[Module_6%3A_Time_as_an_Intrinsic_Index| : Intrinsic decision arrays; example of Time as an intrinsic index]]<br /> | ||
+ | <br /> | ||
+ | Embedded topics relevant only to Non-Linear Problems (NLPs) are:<br /> | ||
+ | |||
+ | * Improving efficiency using context variables ('''[[Optimizing_with_Uncertainty#Module_4:_Multiple_Optimizations_of_Separate_Samples_.28MOSS.29|Modules 4]] and [[Module_5%3A_Time_as_an_Extrinsic_index|5]]''') | ||
+ | * '''[[Module_7%3A_Embedding_an_NLP_in_a_Dynamic_Loop|Module 7]]'''[[Module_7%3A_Embedding_an_NLP_in_a_Dynamic_Loop|: Embedding an NLP inside a dynamic loop]] | ||
+ | |||
+ | |||
+ | <footer> Optimizing with Arrays / {{PAGENAME}} / NLP Characteristics</footer> |
Latest revision as of 17:04, 24 May 2016
Before reading this chapter, you should already be familiar with the basic parameters of DefineOptimization() and OptSolution() functions, as discussed in the Quick Start, and the roles of intrinsic and extrinsic indexes in optimization, as discussed in Arrays in Optimization Models and Array Abstraction.
Additionally, Modules 3 and 4 of the Airline NLP example assume familiarity with Monte Carlo simulation and Probability Distributions (see Statistics, Sensitivity, and Uncertainty Analysis in the Analytica User Guide).
Module 7 assumes familiarity with the Dynamic() function (see Dynamic Simulation in the Analytica User Guide).
Topics relevant to all optimization types (LP, QP, and NLP) are:
- Module 1: Setting up basic Airline NLP example
- Module 2: Parametric Analysis
- Combining uncertainty with optimization:
- Module 5: Abstracted objectives; example of Time as an extrinsic index
- Module 6 : Intrinsic decision arrays; example of Time as an intrinsic index
Embedded topics relevant only to Non-Linear Problems (NLPs) are:
- Improving efficiency using context variables (Modules 4 and 5)
- Module 7: Embedding an NLP inside a dynamic loop
Enable comment auto-refresher