Difference between revisions of "Excel to Analytica Mappings/Math Functions"
Line 1: | Line 1: | ||
This page shows how Excel Mathematical functions translate to Analytica equivalents | This page shows how Excel Mathematical functions translate to Analytica equivalents | ||
− | = ABS = | + | = ABS(x) = |
− | = ACOS = | + | |
− | = ACOSH = | + | Analytica equivalent: |
− | = ASIN = | + | [[Abs]](x) |
+ | |||
+ | = ACOS(x) = | ||
+ | |||
+ | Analytica equivalent: | ||
+ | [[ArcCos]](x) | ||
+ | |||
+ | = ACOSH(x) = | ||
+ | |||
+ | Analytica equivalent: | ||
+ | [[Ln]](x+[[Sqrt]]( (x-1)*(x+1) ) | ||
+ | |||
+ | = ASIN(x) = | ||
+ | |||
+ | Analytica equivalent: | ||
+ | [[ArcSin]](x) | ||
+ | |||
= ASINH = | = ASINH = | ||
− | = ATAN = | + | |
− | = ATAN2 = | + | Analytica equivalent: |
+ | [[Ln]](x+[[Sqrt]](x^2+1)) | ||
+ | |||
+ | = ATAN(x) = | ||
+ | |||
+ | Analytica equivalent: | ||
+ | [[ArcTan]](x) | ||
+ | |||
+ | = ATAN2(x,y) = | ||
+ | |||
+ | Analytica equivalent: | ||
+ | [[ArcTan2]](y,x) | ||
+ | |||
= ATANH = | = ATANH = | ||
− | = CEILING = | + | |
− | = COMBIN = | + | Analytica equivalent: |
− | = COS = | + | [[Ln]]( (1+x)/(1-x) ) / 2 |
+ | |||
+ | = CEILING(x) = | ||
+ | |||
+ | Analytica equivalent: | ||
+ | [[Ceil]](x) | ||
+ | |||
+ | Analytica does not provide an equivalent to CEILING(x,significance). You can approximate this using: | ||
+ | [[Ceil]]( x / abs(significance) ) * significance | ||
+ | This is only an approximation since round-off errors can through it off slightly. | ||
+ | |||
+ | = COMBIN(n,k) = | ||
+ | |||
+ | Analytica equivalent: | ||
+ | [[Combinations]](k,n) | ||
+ | |||
+ | = COS(x) = | ||
+ | |||
+ | Analytica equivalent: | ||
+ | [[Cos]](x) | ||
+ | |||
= COSH = | = COSH = | ||
− | = DEGREES = | + | Analytica equivalent: |
− | = EVEN = | + | [[Cosh]](x) |
− | = EXP = | + | |
− | = FACT = | + | = DEGREES(angle_in_radians) = |
− | = FACTDOUBLE = | + | |
− | = FLOOR = | + | Analytica equivalent: |
− | = GCD = | + | [[Degrees]](angle_in_radians) |
− | = INT = | + | |
− | = LCM = | + | = EVEN(x) = |
− | = LN = | + | |
− | = LOG = | + | Analytica equivalent: |
− | = LOG10 = | + | 2*[[Round]](x/2) |
+ | |||
+ | = EXP(x) = | ||
+ | |||
+ | Analytica equivalent: | ||
+ | [[Exp]](x) | ||
+ | |||
+ | = FACT(n) = | ||
+ | |||
+ | Analytica equivalent: | ||
+ | [[Factorial]](n) | ||
+ | |||
+ | = FACTDOUBLE(n) = | ||
+ | |||
+ | This function is not provided by Analytica. The following user-defined function can be used: | ||
+ | |||
+ | Function FactDouble( n : scalar ) | ||
+ | Definition: [[Product]]( [[Sequence]](n,1,2) ) | ||
+ | |||
+ | = FLOOR(x) = | ||
+ | |||
+ | Analytica equivalent: | ||
+ | [[Floor]](x) | ||
+ | |||
+ | Analytica does not have an exact equivalent to FLOOR(x,significance), but this can be approximated as: | ||
+ | [[Floor]](x/significance) * significance | ||
+ | This is only an approximation because numeric roundoff may cause slight descrepancies. | ||
+ | |||
+ | = GCD(number1'',number2,...'') = | ||
+ | |||
+ | = INT(x) = | ||
+ | |||
+ | Analytica equivalent: | ||
+ | [[Floor]](x) | ||
+ | |||
+ | = LCM(number1'',number2,...'') = | ||
+ | |||
+ | = LN(x) = | ||
+ | |||
+ | Analytica equivalent: | ||
+ | [[Ln]](x) | ||
+ | |||
+ | = LOG(x,base) = | ||
+ | |||
+ | Analytica equivalent: | ||
+ | [[Ln]](x) / [[Ln]](base) | ||
+ | |||
+ | = LOG10(x) = | ||
+ | |||
+ | Analytica equivalent: | ||
+ | [[LogTen]](x) | ||
+ | |||
= MDETERM = | = MDETERM = | ||
= MINVERSE = | = MINVERSE = |
Revision as of 00:46, 12 January 2008
This page shows how Excel Mathematical functions translate to Analytica equivalents
ABS(x)
Analytica equivalent:
Abs(x)
ACOS(x)
Analytica equivalent:
ArcCos(x)
ACOSH(x)
Analytica equivalent:
Ln(x+Sqrt( (x-1)*(x+1) )
ASIN(x)
Analytica equivalent:
ArcSin(x)
ASINH
Analytica equivalent:
Ln(x+Sqrt(x^2+1))
ATAN(x)
Analytica equivalent:
ArcTan(x)
ATAN2(x,y)
Analytica equivalent:
ArcTan2(y,x)
ATANH
Analytica equivalent:
Ln( (1+x)/(1-x) ) / 2
CEILING(x)
Analytica equivalent:
Ceil(x)
Analytica does not provide an equivalent to CEILING(x,significance). You can approximate this using:
Ceil( x / abs(significance) ) * significance
This is only an approximation since round-off errors can through it off slightly.
COMBIN(n,k)
Analytica equivalent:
Combinations(k,n)
COS(x)
Analytica equivalent:
Cos(x)
COSH
Analytica equivalent:
Cosh(x)
DEGREES(angle_in_radians)
Analytica equivalent:
Degrees(angle_in_radians)
EVEN(x)
Analytica equivalent:
2*Round(x/2)
EXP(x)
Analytica equivalent:
Exp(x)
FACT(n)
Analytica equivalent:
Factorial(n)
FACTDOUBLE(n)
This function is not provided by Analytica. The following user-defined function can be used:
Function FactDouble( n : scalar ) Definition: Product( Sequence(n,1,2) )
FLOOR(x)
Analytica equivalent:
Floor(x)
Analytica does not have an exact equivalent to FLOOR(x,significance), but this can be approximated as:
Floor(x/significance) * significance
This is only an approximation because numeric roundoff may cause slight descrepancies.
GCD(number1,number2,...)
INT(x)
Analytica equivalent:
Floor(x)
LCM(number1,number2,...)
LN(x)
Analytica equivalent:
Ln(x)
LOG(x,base)
Analytica equivalent:
Ln(x) / Ln(base)
LOG10(x)
Analytica equivalent:
LogTen(x)
Enable comment auto-refresher