Difference between revisions of "Excel to Analytica Mappings/Math Functions"

 
Line 1: Line 1:
 
This page shows how Excel Mathematical functions translate to Analytica equivalents
 
This page shows how Excel Mathematical functions translate to Analytica equivalents
  
= ABS =
+
= ABS(x) =
= ACOS =
+
 
= ACOSH =
+
Analytica equivalent:
= ASIN =
+
[[Abs]](x)
 +
 
 +
= ACOS(x) =
 +
 
 +
Analytica equivalent:
 +
[[ArcCos]](x)
 +
 
 +
= ACOSH(x) =
 +
 
 +
Analytica equivalent:
 +
[[Ln]](x+[[Sqrt]]( (x-1)*(x+1) )
 +
 
 +
= ASIN(x) =
 +
 
 +
Analytica equivalent:
 +
[[ArcSin]](x)
 +
 
 
= ASINH =
 
= ASINH =
= ATAN =
+
 
= ATAN2 =
+
Analytica equivalent:
 +
[[Ln]](x+[[Sqrt]](x^2+1))
 +
 
 +
= ATAN(x) =
 +
 
 +
Analytica equivalent:
 +
[[ArcTan]](x)
 +
 
 +
= ATAN2(x,y) =
 +
 
 +
Analytica equivalent:
 +
[[ArcTan2]](y,x)
 +
 
 
= ATANH =
 
= ATANH =
= CEILING =
+
 
= COMBIN =
+
Analytica equivalent:
= COS =
+
[[Ln]]( (1+x)/(1-x) ) / 2
 +
 
 +
= CEILING(x) =
 +
 
 +
Analytica equivalent:
 +
[[Ceil]](x)
 +
 
 +
Analytica does not provide an equivalent to CEILING(x,significance).  You can approximate this using:
 +
[[Ceil]]( x / abs(significance) ) * significance
 +
This is only an approximation since round-off errors can through it off slightly.
 +
 
 +
= COMBIN(n,k) =
 +
 
 +
Analytica equivalent:
 +
[[Combinations]](k,n)
 +
 
 +
= COS(x) =
 +
 
 +
Analytica equivalent:
 +
[[Cos]](x)
 +
 
 
= COSH =
 
= COSH =
= DEGREES =
+
Analytica equivalent:
= EVEN =
+
[[Cosh]](x)
= EXP =
+
 
= FACT =
+
= DEGREES(angle_in_radians) =
= FACTDOUBLE =
+
 
= FLOOR =
+
Analytica equivalent:
= GCD =
+
[[Degrees]](angle_in_radians)
= INT =
+
 
= LCM =
+
= EVEN(x) =
= LN =
+
 
= LOG =
+
Analytica equivalent:
= LOG10 =
+
2*[[Round]](x/2)
 +
 
 +
= EXP(x) =
 +
 
 +
Analytica equivalent:
 +
[[Exp]](x)
 +
 
 +
= FACT(n) =
 +
 
 +
Analytica equivalent:
 +
[[Factorial]](n)
 +
 
 +
= FACTDOUBLE(n) =
 +
 
 +
This function is not provided by Analytica.  The following user-defined function can be used:
 +
 
 +
Function FactDouble( n : scalar )
 +
Definition: [[Product]]( [[Sequence]](n,1,2) )
 +
 
 +
= FLOOR(x) =
 +
 
 +
Analytica equivalent:
 +
[[Floor]](x)
 +
 
 +
Analytica does not have an exact equivalent to FLOOR(x,significance), but this can be approximated as:
 +
[[Floor]](x/significance) * significance
 +
This is only an approximation because numeric roundoff may cause slight descrepancies.
 +
 
 +
= GCD(number1'',number2,...'') =
 +
 
 +
= INT(x) =
 +
 
 +
Analytica equivalent:
 +
[[Floor]](x)
 +
 
 +
= LCM(number1'',number2,...'') =
 +
 
 +
= LN(x) =
 +
 
 +
Analytica equivalent:
 +
[[Ln]](x)
 +
 
 +
= LOG(x,base) =
 +
 
 +
Analytica equivalent:
 +
[[Ln]](x) / [[Ln]](base)
 +
 
 +
= LOG10(x) =
 +
 
 +
Analytica equivalent:
 +
[[LogTen]](x)
 +
 
 
= MDETERM =
 
= MDETERM =
 
= MINVERSE =
 
= MINVERSE =

Revision as of 00:46, 12 January 2008

This page shows how Excel Mathematical functions translate to Analytica equivalents

ABS(x)

Analytica equivalent:

Abs(x)

ACOS(x)

Analytica equivalent:

ArcCos(x)

ACOSH(x)

Analytica equivalent:

Ln(x+Sqrt( (x-1)*(x+1) )

ASIN(x)

Analytica equivalent:

ArcSin(x)

ASINH

Analytica equivalent:

Ln(x+Sqrt(x^2+1))

ATAN(x)

Analytica equivalent:

ArcTan(x)

ATAN2(x,y)

Analytica equivalent:

ArcTan2(y,x)

ATANH

Analytica equivalent:

Ln( (1+x)/(1-x) ) / 2

CEILING(x)

Analytica equivalent:

Ceil(x)

Analytica does not provide an equivalent to CEILING(x,significance). You can approximate this using:

Ceil( x / abs(significance) ) * significance

This is only an approximation since round-off errors can through it off slightly.

COMBIN(n,k)

Analytica equivalent:

Combinations(k,n)

COS(x)

Analytica equivalent:

Cos(x)

COSH

Analytica equivalent:

Cosh(x)

DEGREES(angle_in_radians)

Analytica equivalent:

Degrees(angle_in_radians)

EVEN(x)

Analytica equivalent:

2*Round(x/2)

EXP(x)

Analytica equivalent:

Exp(x)

FACT(n)

Analytica equivalent:

Factorial(n)

FACTDOUBLE(n)

This function is not provided by Analytica. The following user-defined function can be used:

Function FactDouble( n : scalar )
Definition: Product( Sequence(n,1,2) )

FLOOR(x)

Analytica equivalent:

Floor(x)

Analytica does not have an exact equivalent to FLOOR(x,significance), but this can be approximated as:

Floor(x/significance) * significance

This is only an approximation because numeric roundoff may cause slight descrepancies.

GCD(number1,number2,...)

INT(x)

Analytica equivalent:

Floor(x)

LCM(number1,number2,...)

LN(x)

Analytica equivalent:

Ln(x)

LOG(x,base)

Analytica equivalent:

Ln(x) / Ln(base)

LOG10(x)

Analytica equivalent:

LogTen(x)

MDETERM

MINVERSE

MMULT

MOD

MROUND

MULTINOMIAL

ODD

PI

POWER

PRODUCT

QUOTIENT

RADIANS

RAND

RANDBETWEEN

ROMAN

ROUND

ROUNDDOWN

ROUNDUP

SERIESSUM

SIGN

SIG

SINH

SQRT

SQRTPI

SUBTOTAL

SUM

SUMIF

SUMPRODUCT

SUMSQ

SUMX2MY2

SUMX2PY2

SUMXMY2

TAN

TANH

TRUNC

Comments


You are not allowed to post comments.