Difference between revisions of "MdTable"
m (→Examples) |
|||
Line 151: | Line 151: | ||
|} | |} | ||
+ | Cells with no corresponding rows in <code>T</code> containing <code>n/a</code>. Rows 6 and 7 in <code>T</code> both specify values for <code>Car_type = BMW, Mpg = 35</code>, which are combined by the "average" conglomeration function. | ||
− | + | You can also create global indexes for the result, but let it set the index values for you (requires [[Analytica 6.3]] or later). | |
+ | :<code>Index Mpg := ComputedBy(T)</code> | ||
+ | :<code>Index Car_type := ComputedBy(T)</code> | ||
+ | :<code>[[MdTable]](T, Rows, Cols, [Car_type, Mpg], 'average') →</code> | ||
+ | :{| class="wikitable" | ||
+ | ! !! colspan="3" |.Mpg ▶ | ||
+ | |- | ||
+ | ! Car_type ▼ !! 26 !! 30 !! 35 | ||
+ | |- | ||
+ | !BMW | ||
+ | | <span style="color:lightgray">Null</span> ||2955 || 2835 | ||
+ | |- | ||
+ | !Honda | ||
+ | |2330 ||<span style="color:lightgray">Null</span> ||2210 | ||
+ | |- | ||
+ | !VW | ||
+ | |2185 ||1705 || <span style="color:lightgray">Null</span> | ||
+ | |} | ||
[[MdTable]] can also work with a User-Defined function for conglomeration, provided it is an [[Array-reducing functions]] that operates over an index. Suppose we define this Function <code>First</code> that returns the first element of an array over an index: | [[MdTable]] can also work with a User-Defined function for conglomeration, provided it is an [[Array-reducing functions]] that operates over an index. Suppose we define this Function <code>First</code> that returns the first element of an array over an index: |
Revision as of 23:19, 5 January 2023
Release: |
4.6 • 5.0 • 5.1 • 5.2 • 5.3 • 5.4 • 6.0 • 6.1 • 6.2 • 6.3 • 6.4 • 6.5 |
---|
MdTable(t, rows, cols,vars, conglomerationFn, defaultValue, valueColumn)
MdTable converts a 2D relational table, «t», indexed by «rows» and «cols», into an N-dimensional array result. It is analogous to PivotTable in Excel. It is the inverse of MdArrayToTable().
Suppose «cols» has N elements. In the standard case, the first N-1 elements contain the identifier of an index (or a Handle to an index), and the last column contains a numerical value (a "measure" in database terminology). It returns an array with N-1 dimensions, corresponding to the N-1 indexes. Each cell contains the sum (or other «conglomerationFn») over the numerical values for all rows of «t» whose values match the index values in first N-1 «cols». If the index values of a cell in the result array match no row in «t», the result cell contains «defaultValue» (default NULL).
⇒ |
| |||||||||||||||||||||
A relational table on the left is the input to MdTable. The array on the right is the result. |
If the values in the first N-1 «cols» are identifiers of or handles to the desired indexes, you can specify the list of identifers or handles to indexes in the optional parameters «vars». You may want to create indexes for some or all of them. You can use the Unique function to define each index as the unique set of values from the corresponding column. Or, you can let MdTable automatically create Local Indexes for any or all of these columns by specifying a textual name for the new index that starts with a dot (for example, '.I'
). The dot prefix avoids possibly identifier collisions with existing or future global objects. The local index is set to the sorted unique values that appear in the corresponding column. Yet another option is to allow MdTable to define a global index for you corresponding to a given column. To do this, create the global index and set its definition to ComputedBy(X}
, where X
is the name of the variable containing the call to MdTable. If the call to MdTable is within a User-Defined Function, then X
would be the variable that calls the UDF. When using this configuration, the «cols» element cannot be a Handle to the index (which introduces a disallowed dependency loop). When evaluated, MdTable will set the global index's IndexValue to the sorted unique values that occur in the corresponding column.
MdTable can also handle a relational table that has multiple values ("measure" columns) -- a "fact table" in database terminology. In this case, last M elements of the «cols» index contain these measures. And the first N-M columns contain the coordinates of the indexes. You specify «valueColumn» parameter as the index over last M value columns. Then the resulting array has N-M+1 indexes -- corresponding to the first N-M columns plus the «valueColumn» index.
Optional parameters
vars
If «Cols» already contains identifiers of (or handles to) the Index variables containing the unique values in each column, you can omit «vars». Otherwise, you should specify «vars» as a list of the identifiers or Handles to these indexes. You don't need to include the last column(s) in «vars», which it assumes contains the values. Each index in «vars» becomes an index of the result. If you want to refer to an existing local index, you must use a Handle, because text identifiers can only refer to a global variable. It's safer to use Handles for all the Indexes, so that the model won't break if someone changes the identifier of one of the Indexes. If you provide a textual index name, but the index does not exist, MdTable will create a local index with that name automatically.
Instead a List, you can also pass a 1-D array indexed by «Cols» to the «vars» parameter. When «vars» is a List, it contains only the non-value columns. When «vars» is indexed by «Cols», it contains an element for every column, even the value column(s). The element(s) of «vars» that correspond to the value column are ignored.
Each element of «vars» identifies the corresponding index in one of the following ways:
- A Handle to a global index which has been suitably defined.
- A textual name of a global index which has been suitably defined.
- A Handle or textual name of a global index that is defined as
ComputedBy(X)
, whereX
is the name of the variable that calls MdTable. In this case, MdTable sets the index values to the sorted unique values that appear in the corresponding column. - A textual name that starts with a dot, such as
'.Year_acquired'
. MdTable will create a new local index with that name containing the sorted unique values that appear in the corresponding column. If the text includes spaces or other non-identifier characters, a legal identifier is generated (e.g., by replacing disallowed characters with'_'
) and the title is set to the text (without the initial dot). - Null -- which ignores the corresponding column during the transformation..
When use an existing global index, it should have as values all the unique values from the corresponding column in «T», for example:
Index Cols := ['A', 'B', 'Value']
Index Rows := 1..100
Variable T := Table(Cols, Rows)(.....)
Index A := Unique(T[Cols = 'A'], Rows)
Index B := Unique(T[Cols = 'B'], Rows)
Variable Result := MdTable(T, Rows, Cols)
It's safer to use «vars» using handles rather than the text identifiers of each index:
INDEX Indexes := ListOfHandles(A, B)
Variable Result := MDArray(T, Rows, Cols, Indexes)
In this case, the model will not break if someone changes the Identifier of A
or B
, since these automatically propagate through Indexes
.
If you set an element in «vars» to Null, then the column corresponding to that position will not be mapped to an index. This is equivalent to first re-indexing your data to a new Column index without the column and then applying MdTable to that.
conglomerationFn
The conglomeration function combines the values when two or more rows of «T» have the same coordinates (values in their index columns). The default is "sum". You can specify other options as a text identifier or handle, including: min", "max", "average", or "count", "product", or any Array-reducing functions that operates over an index, with parameters of the form: (A: Array[I]; I: Index)
. It is OK if it has other parameters as long as they are optional.
You can also create your own custom conglomeration function as a UDF.
defaultVal
(Default: NULL) The value of a result cell that has no corresponding rows in «T». It is often a good idea to set the default to 0.
valueColumn
In OLAP terminology, a fact table is a table in which the first N-M columns specify coordinates in a multi-dimensional cube, and the last M columns specify measures along a measure dimension. Each row has multiple values across this measure dimension. In this case, MdTable() generates a multi-dimensional array with N-M+1 dimensions, the extra dimension being the measure dimension. You specify the measure dimension in the «valueColumn» parameter, usually as an Index, but it can be a 1-D array, indexed by your measure index. The size of the «valueColumn» index must be M. In this case, «vars» identifies as indexes only the first N-M elements of «Cols». It maps the remaining M «Cols» into «valueColumn», which is also an index of the result.
Library
Array
Examples
Suppose T
, Rows
, and Cols
are defined like this:
Cols ▶ Rows ▼ Car_type Mpg X 1 VW 26 2185 2 VW 30 1705 3 Honda 26 2330 4 Honda 35 2210 5 BMW 30 2955 6 BMW 35 2800 7 BMW 35 2870
The first example automatically creates local indexes for all of the result indexes for you.
MdTable(T, Rows, Cols, '.' & Cols, 'average')→
.Mpg ▶ .Car_type ▼ 26 30 35 BMW Null 2955 2835 Honda 2330 Null 2210 VW 2185 1705 Null
This next example assumes you've created indexes Car_type
and Mpg
in advance. Since you created them yourself, you have control over the ordering of the index elements.
MdTable(T, Rows, Cols, [Car_type, Mpg], 'average', 'n/a') →
Mpg ▶ Car_type ▼ 26 30 35 VW 2185 1705 n/a Honda 2330 n/a 2210 BMW n/a 2955 2835
Cells with no corresponding rows in T
containing n/a
. Rows 6 and 7 in T
both specify values for Car_type = BMW, Mpg = 35
, which are combined by the "average" conglomeration function.
You can also create global indexes for the result, but let it set the index values for you (requires Analytica 6.3 or later).
Index Mpg := ComputedBy(T)
Index Car_type := ComputedBy(T)
MdTable(T, Rows, Cols, [Car_type, Mpg], 'average') →
.Mpg ▶ Car_type ▼ 26 30 35 BMW Null 2955 2835 Honda 2330 Null 2210 VW 2185 1705 Null
MdTable can also work with a User-Defined function for conglomeration, provided it is an Array-reducing functions that operates over an index. Suppose we define this Function First
that returns the first element of an array over an index:
Function First( A : Array[I] ; I : Index ) := A[@I = 1]
We can then use it as the conglomeration function:
MdTable(T, Rows, Cols, [Car_type, Mpg], 'First', 'n/a') →
Mpg ▶ Car_type ▼ 26 30 35 VW 2185 1705 n/a Honda 2330 n/a 2210 BMW n/a 2955 2800
To aggregate X
over Car_type
, we can use the «valueColumn». Here we will aggregate using Sum.
MdTable(T, Rows, Cols, [Car_type], valueColumn: 'X') →
Car_Type ▼ VW 3890 Honda 4540 BMW 8625
In the previous example, Car_type
is the first column. When you aggregate in this fashion, the target aggregation index must be the first column. If you wanted to aggregate onto Mpg
(summing all records with the same Mpg
) then you would need to re-index first to make Mpg
the first column like this:
Index L := ['Mpg', 'X'];
MdTable(T[Cols = L], Rows, L, [mpg], valueColumn: 'X') →
Mpg ▼ 26 4515 30 4660 35 7880
If T
had 6 coordinate columns and you wanted to aggregate onto 3 dimensions only, then you'd need to make sure that the three final dimensions were in the first three columns. If they were not there initially, then you'd reindex as in the previous example. If you are aggregating only a single target dimension, the Aggregate function can also be used and may be more intuitive. MdTable is actually more general since you can aggregate onto a multi-dimensional table.
To use both Mpg
and X
as value columns, we can define a measure dimension:
Index Measure_Index := ['Mpg', 'X']
Then
MdTable(T, Rows, Cols, [Car_type], valueColumn: Measure_Index) →
MeasureIndex ▶ Car_Type ▼ Mpg X VW 56 3890 Honda 61 4540 BMW 100 8625
Notice here that both Mpg
and X
have been summed -- both values used the same conglomeration function. However, suppose we want the average value for Mpg
, but the maximum value for X
, i.e., each "measure" having its own conglomeration. We can accomplish this using:
MdTable(T, Rows, Cols, [Car_type], valueColumn: Measure_Index,
conglomerationFn: Array(Measure_Index, ["average", "max"])) →
MeasureIndex ▶ Car_Type ▼ Mpg X VW 28 2185 Honda 30.5 2330 BMW 33.3 2955
Fact Table
In order to convert a 2D relational table with more than one value per combination of indexes, you would use the parameter «valueColumn» to create a Fact Table. For example, suppose T
, Rows
, and Cols
are defined as indicated by the following table:
Cols ▶ Rows ▼ Car_type Mpg X Y 1 VW 26 2185 1 2 VW 30 1705 2 3 Honda 26 2330 3 4 Honda 35 2210 3 5 BMW 30 2955 4 6 BMW 35 2800 5 7 BMW 35 2870 5
And suppose Fact
is an index defined as ['X', 'Y']
. Therefore:
MDTable(T, Rows, Cols, [Car_type, Mpg], valueColumn: Fact, defaultValue: "n/a") →
MPG = 26 MPG = 30 MPG = 35 Fact ▶ Car_type ▼ X Y VW 2185 1 Honda 2330 3 BMW n/a n/a Fact ▶ Car_type ▼ X Y VW 1705 2 Honda n/a n/a BMW 1955 4 Fact ▶ Car_type ▼ X Y VW n/a n/a Honda 2210 3 BMW 5670 10 Notice that in the example, Rows 6 and 7 both specified values for
Car_type = BMW, Mpg=35
. By default the Sum conglomeration function was used to combine these.History
Introduced in Analytica 4.0.
See Also
- MdArrayToTable inverse of MdTable
- Smart_MdTable library
- Relational tables and multiD arrays
- Unflatten
- Unique
- Aggregate
Enable comment auto-refresher