Difference between revisions of "Gaussian distribution"
m (adding doc status category) |
|||
Line 9: | Line 9: | ||
Multivariate Distributions.ana | Multivariate Distributions.ana | ||
+ | |||
+ | = Example = | ||
+ | |||
+ | Index I := [1,2,3,4] | ||
+ | Index J := [1,2,3,4] | ||
+ | {| border="1" | ||
+ | |+ Variable M := Table(I) | ||
+ | ! I → !! 1 !! 2 !! 3 !! 4 | ||
+ | |- | ||
+ | | || 10 || -5 || 0 || 7 | ||
+ | |} | ||
+ | |||
+ | {| border="1" | ||
+ | |+ Variable CV := Table(I,J) | ||
+ | ! !! !! colspan="4" | I | ||
+ | |- | ||
+ | ! !! !! 1 !! 2 !! 3 !! 4 | ||
+ | |- | ||
+ | ! rowspan="4" | J | ||
+ | ! 1 || 1 || -0.5 || 0.3 || 0.7 | ||
+ | |- | ||
+ | ! 2 || -0.5 || 1 || -0.8 || -0.2 | ||
+ | |- | ||
+ | ! 3 || 0.3 || -0.8 || 1 || 0.4 | ||
+ | |- | ||
+ | ! 4 || 0.7 || -0.2 || 0.4 || 1 | ||
+ | |} | ||
+ | |||
+ | :Gaussian( M, CV, I, J ) → | ||
+ | |||
+ | [image:Gaussian1_2.jpg] | ||
+ | [image:Gaussian1_4.jpg] | ||
+ | [image:Gaussian2_4.jpg] | ||
+ | |||
+ | (The above graphs are scatter plots in sample view, using I as the coordinate index.) | ||
= See Also = | = See Also = | ||
− | * [[BiNormal]] | + | * [[Normal]] : for 1-D normal |
− | * [[ | + | * [[BiNormal]], [[Normal_correl]] : For 2-D normals |
− | * [[ | + | * [[MultiNormal]] : For multi-D normal (Gaussian) using correlation, rather than covariance |
+ | * [[Variance]] (see: use of Variance for estimating sample covariance from data) |
Revision as of 04:42, 2 May 2007
Gaussian(meanVec : numeric[I],covar : numeric[I,J]; I,J:IndexType)
A multi-variate Gaussian distribution based on a mean vector and covariance matrix. The covariance matrix must symmetric and positive-definite. The meanVec is indexed by I. The covariance matrix is 2-D, indexed by I & J. Indexes I & J should be the same length.
Library
Multivariate Distributions.ana
Example
Index I := [1,2,3,4] Index J := [1,2,3,4]
I → | 1 | 2 | 3 | 4 |
---|---|---|---|---|
10 | -5 | 0 | 7 |
I | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
J | 1 | 1 | -0.5 | 0.3 | 0.7 |
2 | -0.5 | 1 | -0.8 | -0.2 | |
3 | 0.3 | -0.8 | 1 | 0.4 | |
4 | 0.7 | -0.2 | 0.4 | 1 |
- Gaussian( M, CV, I, J ) →
[image:Gaussian1_2.jpg] [image:Gaussian1_4.jpg] [image:Gaussian2_4.jpg]
(The above graphs are scatter plots in sample view, using I as the coordinate index.)
See Also
- Normal : for 1-D normal
- BiNormal, Normal_correl : For 2-D normals
- MultiNormal : For multi-D normal (Gaussian) using correlation, rather than covariance
- Variance (see: use of Variance for estimating sample covariance from data)
Comments
Enable comment auto-refresher