Difference between revisions of "Dist serial correl"
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | [[Category:Multivariate Distribution Functions]] | + | [[Category: Multivariate Distribution Functions]] |
+ | [[Category: Multivariate Distributions library functions]] | ||
[[Category:Doc Status C]] <!-- For Lumina use, do not change --> | [[Category:Doc Status C]] <!-- For Lumina use, do not change --> | ||
− | = Dist_serial_correl(x,r,i) = | + | == Dist_serial_correl(x, r, i) == |
+ | Generates an array ''y'' over index «i» where each y[i] has a marginal distribution identical to «x», and serial rank correlation of «r» with y[i-1]. | ||
− | + | If «x» is indexed by «i», each y[i] has the same marginal distribution as x[i], but with samples reordered to have the specified rank correlation «r» between successive values. | |
− | + | If «r» is indexed by «i», r[i = k] specifies the rank correlation between y[i = k] and y[i = k - 1]. Then the first correlation, r[i = 1], is ignored. | |
− | + | In [[Mid]] context, it returns [[Mid]](x). | |
− | + | The result retains no probabilistic dependence on «x». | |
− | Multivariate Distributions.ana | + | == Library == |
− | + | Multivariate Distributions library functions ([[media:Multivariate Distributions.ana |Multivariate Distributions.ana]]) | |
− | + | :Use '''File → Add Library...''' to add this library | |
+ | == See Also == | ||
* [[Normal_serial_correl]] | * [[Normal_serial_correl]] | ||
* [[Dist_additive_growth]] | * [[Dist_additive_growth]] | ||
* [[Dist_compound_growth]] | * [[Dist_compound_growth]] | ||
+ | * [[Multivariate distributions]] | ||
+ | * [[media:Multivariate Distributions.ana |Multivariate Distributions.ana]] |
Latest revision as of 00:33, 24 February 2016
Dist_serial_correl(x, r, i)
Generates an array y over index «i» where each y[i] has a marginal distribution identical to «x», and serial rank correlation of «r» with y[i-1].
If «x» is indexed by «i», each y[i] has the same marginal distribution as x[i], but with samples reordered to have the specified rank correlation «r» between successive values.
If «r» is indexed by «i», r[i = k] specifies the rank correlation between y[i = k] and y[i = k - 1]. Then the first correlation, r[i = 1], is ignored.
In Mid context, it returns Mid(x).
The result retains no probabilistic dependence on «x».
Library
Multivariate Distributions library functions (Multivariate Distributions.ana)
- Use File → Add Library... to add this library
See Also
Comments
Enable comment auto-refresher