Difference between revisions of "User:AManandhar"
AManandhar (talk | contribs) (→Links) |
AManandhar (talk | contribs) (→Links) |
||
Line 19: | Line 19: | ||
Importing CSV data to SQL Server: http://sqlserver2000.databases.aspfaq.com/how-do-i-load-text-or-csv-file-data-into-sql-server.html | Importing CSV data to SQL Server: http://sqlserver2000.databases.aspfaq.com/how-do-i-load-text-or-csv-file-data-into-sql-server.html | ||
− | + | <math> | |
− | <math>{\ | + | \operatorname{erfc}(x) = |
+ | \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = | ||
+ | \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} | ||
+ | </math> | ||
=Internal Links= | =Internal Links= |
Revision as of 02:08, 21 December 2010
Links
Salesforce Data Backup: http://sfdc.arrowpointe.com/2008/04/28/do-you-backup-your-salesforce-data/
Importing CSV data to SQL Server: http://sqlserver2000.databases.aspfaq.com/how-do-i-load-text-or-csv-file-data-into-sql-server.html
[math]\displaystyle{ \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} }[/math]
Internal Links
Upgrade Website: http://www.lumina.com/ana/enterLic.htm
Price calculator: http://awp.analyticaonline.com/pricingpolicy/Default.aspx
IPs
Cubeplan.com: 173.201.21.179