Difference between revisions of "Log-normal distribution"
(Parameter estimation) |
|||
Line 25: | Line 25: | ||
== Syntax == | == Syntax == | ||
LogNormal(median, gsdev, mean, stddev: Optional Positive; over: ... Optional Atom) | LogNormal(median, gsdev, mean, stddev: Optional Positive; over: ... Optional Atom) | ||
+ | |||
+ | = Parameter Estimation = | ||
+ | |||
+ | Suppose ''X'' contains sampled historical data indexed by ''I'', and consisting solely of positive values. To estimate the parameters of the best-fit [[LogNormal]] distribution, the following parameter estimation formulae can be used: | ||
+ | |||
+ | :median := [[Median]](X,I) | ||
+ | ::''or,'' := [[Exp]]([[Mean]]([[Ln]](X),I)) | ||
+ | :gsdev := [[Exp]]([[SDeviation]]([[Ln]](X),I)) | ||
= See Also = | = See Also = |
Revision as of 14:41, 5 August 2009
LogNormal(median, gsdev)
Generates a sample with a lognormal distribution with given median and gsdev (geometric standard deviation). The logarithm of a lognormal random variable has a normal distribution.
A normal distribution is symmetric around its mean: If x := Normal(mean, sdev), then P(x <= mean - sdev) = P(x >= mean + sdev) = .15. Analogously, a lognormal distribution is ratio-symmetric around its median: If y := LogNormal(median, gsdev), then P(y <= median/gsdev) = P(y >= median*gsdev) = .15.
Lognormal actually has four parameters, median, gsdev (geometric standard deviation), mean, stddev (standard deviation). You can specify any two of them, which are sufficient to specify the rest.
LogNormal(median: med, gsdev: gs) or just LogNormal(med, gs) LogNormal(median: med, stddev: sd) LogNormal(median: med, mean: mu) LogNormal(mean: mu, stddev: s) LogNormal(mean: mu, gsdev: gs ) LogNormal(gsdev: gs, stddev: sd)
If you specify more than two parameters, it will give an error. If you specify no parameters, it will default to standard lognormal -- i.e. whose natural logarithm is a unit normal, mean 0 and standard deviation 1.
Like other distributions, you can also give one or more Over: indexes. These cause it to generate an array of independent lognormal distributions over the specified index(es). For example,
LogNormal(m, gsd, Over: i)
Syntax
LogNormal(median, gsdev, mean, stddev: Optional Positive; over: ... Optional Atom)
Parameter Estimation
Suppose X contains sampled historical data indexed by I, and consisting solely of positive values. To estimate the parameters of the best-fit LogNormal distribution, the following parameter estimation formulae can be used:
Enable comment auto-refresher