Difference between revisions of "Log-normal distribution"

(Parameter estimation)
Line 25: Line 25:
 
== Syntax ==
 
== Syntax ==
 
  LogNormal(median, gsdev, mean, stddev: Optional Positive; over: ... Optional Atom)
 
  LogNormal(median, gsdev, mean, stddev: Optional Positive; over: ... Optional Atom)
 +
 +
= Parameter Estimation =
 +
 +
Suppose ''X'' contains sampled historical data indexed by ''I'', and consisting solely of positive values.  To estimate the parameters of the best-fit [[LogNormal]] distribution, the following parameter estimation formulae can be used:
 +
 +
:median := [[Median]](X,I)
 +
::''or,'' := [[Exp]]([[Mean]]([[Ln]](X),I))
 +
:gsdev := [[Exp]]([[SDeviation]]([[Ln]](X),I))
  
 
= See Also =
 
= See Also =

Revision as of 14:41, 5 August 2009


LogNormal(median, gsdev)

Generates a sample with a lognormal distribution with given median and gsdev (geometric standard deviation). The logarithm of a lognormal random variable has a normal distribution.

A normal distribution is symmetric around its mean: If x := Normal(mean, sdev), then P(x <= mean - sdev) = P(x >= mean + sdev) = .15. Analogously, a lognormal distribution is ratio-symmetric around its median: If y := LogNormal(median, gsdev), then P(y <= median/gsdev) = P(y >= median*gsdev) = .15.

Lognormal actually has four parameters, median, gsdev (geometric standard deviation), mean, stddev (standard deviation). You can specify any two of them, which are sufficient to specify the rest.

LogNormal(median: med, gsdev: gs)  or just LogNormal(med, gs)
LogNormal(median: med, stddev: sd)
LogNormal(median: med, mean: mu)
LogNormal(mean: mu, stddev: s)
LogNormal(mean: mu, gsdev: gs )
LogNormal(gsdev: gs, stddev: sd)

If you specify more than two parameters, it will give an error. If you specify no parameters, it will default to standard lognormal -- i.e. whose natural logarithm is a unit normal, mean 0 and standard deviation 1.

Like other distributions, you can also give one or more Over: indexes. These cause it to generate an array of independent lognormal distributions over the specified index(es). For example,

 LogNormal(m, gsd, Over: i)

Syntax

LogNormal(median, gsdev, mean, stddev: Optional Positive; over: ... Optional Atom)

Parameter Estimation

Suppose X contains sampled historical data indexed by I, and consisting solely of positive values. To estimate the parameters of the best-fit LogNormal distribution, the following parameter estimation formulae can be used:

median := Median(X,I)
or, := Exp(Mean(Ln(X),I))
gsdev := Exp(SDeviation(Ln(X),I))

See Also

Comments


You are not allowed to post comments.