Difference between revisions of "Uniform distribution"
(parameter estimation) |
|||
Line 1: | Line 1: | ||
− | = Function Uniform( | + | = Function Uniform(min, max) = |
[[Category:Doc Status C]] <!-- For Lumina use, do not change --> | [[Category:Doc Status C]] <!-- For Lumina use, do not change --> | ||
− | Returns a variable with a uniform distribution between numbers | + | Returns a variable with a uniform distribution between numbers «min» and «max». For example, |
Uniform(a, b) | Uniform(a, b) | ||
is a continuous distribution in which all real numbers between a and b are equally probable. | is a continuous distribution in which all real numbers between a and b are equally probable. | ||
− | If you omit | + | If you omit «min» and «max», it returns a unit uniform between 0 and 1. |
[New to 4.0] | [New to 4.0] | ||
− | If you set optional parameter Integer as true, it returns a discrete uniform distribution over the integers between | + | If you set optional parameter Integer as true, it returns a discrete uniform distribution over the integers between «min» and «min». For example: |
− | Uniform(1,100,Integer:True) | + | [[Uniform]](1,100,Integer:True) |
is a discrete distribution where each integer 1, 2, .., 99, 100 has an equal probability of 1%. | is a discrete distribution where each integer 1, 2, .., 99, 100 has an equal probability of 1%. | ||
− | If you want a discrete uniform distribution over each value of an index I, use | + | If you want a discrete uniform distribution over each value of an index I, use [[ChanceDist]]: |
− | ChanceDist(1/Size(I), I) | + | [[ChanceDist]](1/[[Size]](I), I) |
Like most distributions, you may use the Over parameter to generate an array of independent distributions for each combination of indexes. For example: | Like most distributions, you may use the Over parameter to generate an array of independent distributions for each combination of indexes. For example: | ||
− | Uniform(Over: I, J) | + | [[Uniform]](Over: I, J) |
− | returns an independent Uniform(0,1) distribution for each combination of values in indexes I and J. | + | returns an independent [[Uniform]](0,1) distribution for each combination of values in indexes I and J. |
− | == | + | = Library = |
+ | |||
+ | Distribution | ||
+ | |||
+ | = Declaration = | ||
Uniform(min: Numeric=0; max: Numeric=1; integer: Boolean=false; over: ... Optional Atomic) | Uniform(min: Numeric=0; max: Numeric=1; integer: Boolean=false; over: ... Optional Atomic) | ||
+ | |||
+ | = Parameter Estimation = | ||
+ | |||
+ | Suppose you have real-valued historic data in ''X'', indexed by ''I'', and you wish to estimate the parameters of the continuous uniform distribution. This is really just a matter of estimating the lower and upper bounds for the data, since the use of this distribution assumes a uniform distribution between those bounds. The bounds can be estimated using: | ||
+ | «min» := [[Min]](X,I) - 0.5 * ([[Max]](X,I)-[[Min]](X,I)) / [[Sum]](1,I) | ||
+ | «max» := [[Max]](X,I) + 0.5 * ([[Max]](X,I)-[[Min]](X,I)) / [[Sum]](1,I) | ||
+ | |||
+ | If you have discrete integer data in ''D'' indexed by ''I'' and wish to estimate the parameters «min» and «max» for the integer uniform distribution [[Uniform]](«min»,«max»,Integer:True), then the following parameter estimation formulae are appropriate: | ||
+ | «min» := [[Floor]]([[Min]](X,I) - 0.5 * ([[Max]](X,I)-[[Min]](X,I)) / [[Sum]](1,I)) | ||
+ | «max» := [[Ceil]]([[Max]](X,I) + 0.5 * ([[Max]](X,I)-[[Min]](X,I)) / [[Sum]](1,I)) |
Revision as of 21:27, 3 March 2009
Function Uniform(min, max)
Returns a variable with a uniform distribution between numbers «min» and «max». For example,
Uniform(a, b)
is a continuous distribution in which all real numbers between a and b are equally probable.
If you omit «min» and «max», it returns a unit uniform between 0 and 1.
[New to 4.0] If you set optional parameter Integer as true, it returns a discrete uniform distribution over the integers between «min» and «min». For example:
Uniform(1,100,Integer:True)
is a discrete distribution where each integer 1, 2, .., 99, 100 has an equal probability of 1%.
If you want a discrete uniform distribution over each value of an index I, use ChanceDist:
ChanceDist(1/Size(I), I)
Like most distributions, you may use the Over parameter to generate an array of independent distributions for each combination of indexes. For example:
Uniform(Over: I, J)
returns an independent Uniform(0,1) distribution for each combination of values in indexes I and J.
Library
Distribution
Declaration
Uniform(min: Numeric=0; max: Numeric=1; integer: Boolean=false; over: ... Optional Atomic)
Parameter Estimation
Suppose you have real-valued historic data in X, indexed by I, and you wish to estimate the parameters of the continuous uniform distribution. This is really just a matter of estimating the lower and upper bounds for the data, since the use of this distribution assumes a uniform distribution between those bounds. The bounds can be estimated using:
«min» := Min(X,I) - 0.5 * (Max(X,I)-Min(X,I)) / Sum(1,I) «max» := Max(X,I) + 0.5 * (Max(X,I)-Min(X,I)) / Sum(1,I)
If you have discrete integer data in D indexed by I and wish to estimate the parameters «min» and «max» for the integer uniform distribution Uniform(«min»,«max»,Integer:True), then the following parameter estimation formulae are appropriate:
«min» := Floor(Min(X,I) - 0.5 * (Max(X,I)-Min(X,I)) / Sum(1,I)) «max» := Ceil(Max(X,I) + 0.5 * (Max(X,I)-Min(X,I)) / Sum(1,I))
Enable comment auto-refresher